3.359 \(\int \frac{1}{(a+b \sec ^2(e+f x))^2} \, dx\)

Optimal. Leaf size=92 \[ -\frac{\sqrt{b} (3 a+2 b) \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{2 a^2 f (a+b)^{3/2}}+\frac{x}{a^2}-\frac{b \tan (e+f x)}{2 a f (a+b) \left (a+b \tan ^2(e+f x)+b\right )} \]

[Out]

x/a^2 - (Sqrt[b]*(3*a + 2*b)*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b]])/(2*a^2*(a + b)^(3/2)*f) - (b*Tan[e +
f*x])/(2*a*(a + b)*f*(a + b + b*Tan[e + f*x]^2))

________________________________________________________________________________________

Rubi [A]  time = 0.0854052, antiderivative size = 92, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.357, Rules used = {4128, 414, 522, 203, 205} \[ -\frac{\sqrt{b} (3 a+2 b) \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{2 a^2 f (a+b)^{3/2}}+\frac{x}{a^2}-\frac{b \tan (e+f x)}{2 a f (a+b) \left (a+b \tan ^2(e+f x)+b\right )} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[e + f*x]^2)^(-2),x]

[Out]

x/a^2 - (Sqrt[b]*(3*a + 2*b)*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b]])/(2*a^2*(a + b)^(3/2)*f) - (b*Tan[e +
f*x])/(2*a*(a + b)*f*(a + b + b*Tan[e + f*x]^2))

Rule 4128

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist
[ff/f, Subst[Int[(a + b + b*ff^2*x^2)^p/(1 + ff^2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p},
 x] && NeQ[a + b, 0] && NeQ[p, -1]

Rule 414

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(b*x*(a + b*x^n)^(p + 1)*(
c + d*x^n)^(q + 1))/(a*n*(p + 1)*(b*c - a*d)), x] + Dist[1/(a*n*(p + 1)*(b*c - a*d)), Int[(a + b*x^n)^(p + 1)*
(c + d*x^n)^q*Simp[b*c + n*(p + 1)*(b*c - a*d) + d*b*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d,
 n, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  !( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomial
Q[a, b, c, d, n, p, q, x]

Rule 522

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{\left (1+x^2\right ) \left (a+b+b x^2\right )^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{b \tan (e+f x)}{2 a (a+b) f \left (a+b+b \tan ^2(e+f x)\right )}+\frac{\operatorname{Subst}\left (\int \frac{2 a+b-b x^2}{\left (1+x^2\right ) \left (a+b+b x^2\right )} \, dx,x,\tan (e+f x)\right )}{2 a (a+b) f}\\ &=-\frac{b \tan (e+f x)}{2 a (a+b) f \left (a+b+b \tan ^2(e+f x)\right )}+\frac{\operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\tan (e+f x)\right )}{a^2 f}-\frac{(b (3 a+2 b)) \operatorname{Subst}\left (\int \frac{1}{a+b+b x^2} \, dx,x,\tan (e+f x)\right )}{2 a^2 (a+b) f}\\ &=\frac{x}{a^2}-\frac{\sqrt{b} (3 a+2 b) \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{2 a^2 (a+b)^{3/2} f}-\frac{b \tan (e+f x)}{2 a (a+b) f \left (a+b+b \tan ^2(e+f x)\right )}\\ \end{align*}

Mathematica [C]  time = 1.95369, size = 240, normalized size = 2.61 \[ \frac{\sec ^4(e+f x) (a \cos (2 (e+f x))+a+2 b) \left (2 x (a \cos (2 (e+f x))+a+2 b)+\frac{b ((a+2 b) \sin (2 e)-a \sin (2 f x))}{f (a+b) (\cos (e)-\sin (e)) (\sin (e)+\cos (e))}+\frac{b (3 a+2 b) (\cos (2 e)-i \sin (2 e)) (a \cos (2 (e+f x))+a+2 b) \tan ^{-1}\left (\frac{(\cos (2 e)-i \sin (2 e)) \sec (f x) (a \sin (2 e+f x)-(a+2 b) \sin (f x))}{2 \sqrt{a+b} \sqrt{b (\cos (e)-i \sin (e))^4}}\right )}{f (a+b)^{3/2} \sqrt{b (\cos (e)-i \sin (e))^4}}\right )}{8 a^2 \left (a+b \sec ^2(e+f x)\right )^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sec[e + f*x]^2)^(-2),x]

[Out]

((a + 2*b + a*Cos[2*(e + f*x)])*Sec[e + f*x]^4*(2*x*(a + 2*b + a*Cos[2*(e + f*x)]) + (b*(3*a + 2*b)*ArcTan[(Se
c[f*x]*(Cos[2*e] - I*Sin[2*e])*(-((a + 2*b)*Sin[f*x]) + a*Sin[2*e + f*x]))/(2*Sqrt[a + b]*Sqrt[b*(Cos[e] - I*S
in[e])^4])]*(a + 2*b + a*Cos[2*(e + f*x)])*(Cos[2*e] - I*Sin[2*e]))/((a + b)^(3/2)*f*Sqrt[b*(Cos[e] - I*Sin[e]
)^4]) + (b*((a + 2*b)*Sin[2*e] - a*Sin[2*f*x]))/((a + b)*f*(Cos[e] - Sin[e])*(Cos[e] + Sin[e]))))/(8*a^2*(a +
b*Sec[e + f*x]^2)^2)

________________________________________________________________________________________

Maple [A]  time = 0.08, size = 127, normalized size = 1.4 \begin{align*}{\frac{\arctan \left ( \tan \left ( fx+e \right ) \right ) }{f{a}^{2}}}-{\frac{b\tan \left ( fx+e \right ) }{2\, \left ( a+b \right ) af \left ( a+b+b \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }}-{\frac{3\,b}{2\, \left ( a+b \right ) af}\arctan \left ({b\tan \left ( fx+e \right ){\frac{1}{\sqrt{ \left ( a+b \right ) b}}}} \right ){\frac{1}{\sqrt{ \left ( a+b \right ) b}}}}-{\frac{{b}^{2}}{f{a}^{2} \left ( a+b \right ) }\arctan \left ({b\tan \left ( fx+e \right ){\frac{1}{\sqrt{ \left ( a+b \right ) b}}}} \right ){\frac{1}{\sqrt{ \left ( a+b \right ) b}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*sec(f*x+e)^2)^2,x)

[Out]

1/f/a^2*arctan(tan(f*x+e))-1/2*b*tan(f*x+e)/a/(a+b)/f/(a+b+b*tan(f*x+e)^2)-3/2/f*b/a/(a+b)/((a+b)*b)^(1/2)*arc
tan(tan(f*x+e)*b/((a+b)*b)^(1/2))-1/f*b^2/a^2/(a+b)/((a+b)*b)^(1/2)*arctan(tan(f*x+e)*b/((a+b)*b)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(f*x+e)^2)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 0.621909, size = 1027, normalized size = 11.16 \begin{align*} \left [\frac{8 \,{\left (a^{2} + a b\right )} f x \cos \left (f x + e\right )^{2} - 4 \, a b \cos \left (f x + e\right ) \sin \left (f x + e\right ) + 8 \,{\left (a b + b^{2}\right )} f x +{\left ({\left (3 \, a^{2} + 2 \, a b\right )} \cos \left (f x + e\right )^{2} + 3 \, a b + 2 \, b^{2}\right )} \sqrt{-\frac{b}{a + b}} \log \left (\frac{{\left (a^{2} + 8 \, a b + 8 \, b^{2}\right )} \cos \left (f x + e\right )^{4} - 2 \,{\left (3 \, a b + 4 \, b^{2}\right )} \cos \left (f x + e\right )^{2} + 4 \,{\left ({\left (a^{2} + 3 \, a b + 2 \, b^{2}\right )} \cos \left (f x + e\right )^{3} -{\left (a b + b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt{-\frac{b}{a + b}} \sin \left (f x + e\right ) + b^{2}}{a^{2} \cos \left (f x + e\right )^{4} + 2 \, a b \cos \left (f x + e\right )^{2} + b^{2}}\right )}{8 \,{\left ({\left (a^{4} + a^{3} b\right )} f \cos \left (f x + e\right )^{2} +{\left (a^{3} b + a^{2} b^{2}\right )} f\right )}}, \frac{4 \,{\left (a^{2} + a b\right )} f x \cos \left (f x + e\right )^{2} - 2 \, a b \cos \left (f x + e\right ) \sin \left (f x + e\right ) + 4 \,{\left (a b + b^{2}\right )} f x +{\left ({\left (3 \, a^{2} + 2 \, a b\right )} \cos \left (f x + e\right )^{2} + 3 \, a b + 2 \, b^{2}\right )} \sqrt{\frac{b}{a + b}} \arctan \left (\frac{{\left ({\left (a + 2 \, b\right )} \cos \left (f x + e\right )^{2} - b\right )} \sqrt{\frac{b}{a + b}}}{2 \, b \cos \left (f x + e\right ) \sin \left (f x + e\right )}\right )}{4 \,{\left ({\left (a^{4} + a^{3} b\right )} f \cos \left (f x + e\right )^{2} +{\left (a^{3} b + a^{2} b^{2}\right )} f\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(f*x+e)^2)^2,x, algorithm="fricas")

[Out]

[1/8*(8*(a^2 + a*b)*f*x*cos(f*x + e)^2 - 4*a*b*cos(f*x + e)*sin(f*x + e) + 8*(a*b + b^2)*f*x + ((3*a^2 + 2*a*b
)*cos(f*x + e)^2 + 3*a*b + 2*b^2)*sqrt(-b/(a + b))*log(((a^2 + 8*a*b + 8*b^2)*cos(f*x + e)^4 - 2*(3*a*b + 4*b^
2)*cos(f*x + e)^2 + 4*((a^2 + 3*a*b + 2*b^2)*cos(f*x + e)^3 - (a*b + b^2)*cos(f*x + e))*sqrt(-b/(a + b))*sin(f
*x + e) + b^2)/(a^2*cos(f*x + e)^4 + 2*a*b*cos(f*x + e)^2 + b^2)))/((a^4 + a^3*b)*f*cos(f*x + e)^2 + (a^3*b +
a^2*b^2)*f), 1/4*(4*(a^2 + a*b)*f*x*cos(f*x + e)^2 - 2*a*b*cos(f*x + e)*sin(f*x + e) + 4*(a*b + b^2)*f*x + ((3
*a^2 + 2*a*b)*cos(f*x + e)^2 + 3*a*b + 2*b^2)*sqrt(b/(a + b))*arctan(1/2*((a + 2*b)*cos(f*x + e)^2 - b)*sqrt(b
/(a + b))/(b*cos(f*x + e)*sin(f*x + e))))/((a^4 + a^3*b)*f*cos(f*x + e)^2 + (a^3*b + a^2*b^2)*f)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(f*x+e)**2)**2,x)

[Out]

Integral((a + b*sec(e + f*x)**2)**(-2), x)

________________________________________________________________________________________

Giac [A]  time = 1.26367, size = 161, normalized size = 1.75 \begin{align*} -\frac{\frac{{\left (\pi \left \lfloor \frac{f x + e}{\pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (b\right ) + \arctan \left (\frac{b \tan \left (f x + e\right )}{\sqrt{a b + b^{2}}}\right )\right )}{\left (3 \, a b + 2 \, b^{2}\right )}}{{\left (a^{3} + a^{2} b\right )} \sqrt{a b + b^{2}}} + \frac{b \tan \left (f x + e\right )}{{\left (b \tan \left (f x + e\right )^{2} + a + b\right )}{\left (a^{2} + a b\right )}} - \frac{2 \,{\left (f x + e\right )}}{a^{2}}}{2 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(f*x+e)^2)^2,x, algorithm="giac")

[Out]

-1/2*((pi*floor((f*x + e)/pi + 1/2)*sgn(b) + arctan(b*tan(f*x + e)/sqrt(a*b + b^2)))*(3*a*b + 2*b^2)/((a^3 + a
^2*b)*sqrt(a*b + b^2)) + b*tan(f*x + e)/((b*tan(f*x + e)^2 + a + b)*(a^2 + a*b)) - 2*(f*x + e)/a^2)/f